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1 Overview of this document

This document presents additional descriptions, details and results that could not go
into the main paper due to space constraints. In Section 2 we expand on the details for
our algorithm, and present a complete table of system parameters we used in all our
experiments. Section 3 discusses the 3D ground truth benchmarks that were used in the
quantitative evaluation of our results, and details the process with which 3D curvilin-
ear ground truth models were obtained with the aid of Blender, for both synthetic and
real data. In Section 4 we present additional figures for our results as well as visual
comparisons to the results of PMVS [4]. Other details can be found in Section 5.

2 Algorithm details

See Algorithm 1 for a detailed pseudo-code of our algorithm, as well as Table 1 for an
index of system parameters used in our experiments.
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Algorithm 1: Multiview Curve Drawing Graph (MDG) Construction
input:

– Multiview Local geometric consistency Network (MLN)
– Multiview Curve-level Consistency Network (MCCN)

output: MDG = (J,B), where J encodes junctions and B curve fragment branches

Visited←− ∅
while V isited 6= SΓ , where SΓ is the set of curves indexed by S do

for each cluster C of the MCCN, do
b0 ←− argmax

Γ∈C
Length(Γ )

MDG0 ←− (J0, B0), where B0 = b0 and J0 = ∅
Given a partial curve drawing graph MDGi = (Ji, Bi), Bi = {b0, . . . , bni}
begin Construct Bi+1

for each other curve Γ ∈ C, Γ /∈ Visited do
for each s do

Bτ (s)
.
= {Γ̃ ∈ Bi : d(Γ̃ (s),Γ (s)) < τm}

if Bτ (s) = ∅ then
// Sample Γ (s) has no corresponding branch
if no branch started then

Start new branch b̃

else if branch has started and s at endpoint of Γ then
// The new branch is added with the
correct topology, either breaking or
elongating existing branches and
creating junctions, according to Figure
9 in the paper

Bi+1 ←− Bi ∪ {b̃}

else // Sample Γ (s) has corresponding branches

begin Insert this sample into the corresponding curve
for each Γ̃ ∈ Bτ (s) do

Update Γ̃ to contain Γ (s)

if branch b̃ had started then
// The new branch is added with
the correct topology, either
breaking or elongating existing
branches and creating junctions,
according to Figure 9 in the
paper

Bi+1 ←− Bi ∪ {b̃}
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Symbol Description Default Value

τl minimum length of curve fragments 40 pixels

τe minimum epipolar overlap 5 pixels

τd maximum distance of supporting edgels 5 pixels

τm sample merge threshold 0.001 world units

τs minimum strength for a strong local link 3

τsl minimum number of strong links to connect curves in the MCCN 5

τprox used for evaluation 3D sample rate

τθ maximum orientation difference of
10◦

supporting edgels

τα minimum angle of curve segments with
10◦

epipolar lines to reconstruct

τt minimum total inliers for a match
5 edgels

to be considered reliable

τv minimum inliers of a supporting view 10 edgels

τr minimum best to second best ratio 1.5

b baseline between consecutive views 20◦

Nc number of confirmation views all views

Table 1: Table of parameters of the system.
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3 Obtaining Ground Truth for Quantitative Evaluation

Quantitative evaluation of 3D models reconstructed from a sequence of images is a non-
trivial task due to the difficulties involved in obtaining clean and accurate ground truth
3D models for physical objects in the world, as well as precise calibration for each of
the images in the sequence. The well-known Middlebury benchmark [1] evaluates full
surface reconstructions, and the ground truth 3D models are not made public; therefore
it is not possible to appropriate them for quantitative evaluation of curve reconstruc-
tions. The EPFL benchmark [2] makes the ground truth 3D models publicly available,
but these datasets are limited in the number of views in the image sequence, as well
object types and illumination conditions captured in the scene. In our case, the diffi-
culty is compounded by the fact that our reconstruction is a wireframe representation,
whereas almost all existing ground truth for multiview stereo is for evaluating dense
surface reconstruction algorithms.

Our first approach for reliable and fair evaluation of our 3D drawing algorithm is
to utilize a synthetic 3D model and a rendering software to factor out calibration and
reconstruction errors common among ground truth models obtained from real world
objects. Here, the realistically-rendered images for this scene, Figure 1, as well as the
precisely calibrated views, Figure 2, are obtained using Blender. Three different illumi-
nation conditions were rendered, and these can be mixed up to test any given algorithm’s
robustness under varying illumination, such as a slow sunset. This synthetic data was
modeled after a real scene in Barcelona, see Figure 3 for some real imagery from this
location.

To the best of our knowledge, there is no popular, publicly-available multiview
stereo ground truth that is based on a precise and complex 3D model and its rendered
images. We have made two versions of our Barcelona Pavilion dataset available for
the evaluation of 3D reconstruction algorithms: i) The full mesh version for evaluating
dense surface reconstruction algorithms, ii) 3D curve version for evaluating curvilinear
models, such as the 3D drawing presented in this work, Figure 4. The latter version was
obtained by a Blender-aided process of manually deleting surface meshes until only the
outline of the objects remained, see Figure 5 and Figure 6.

Although the Barcelona Pavilion dataset allows for a very precise and reliable way
of evaluating 3D models, a point can be made about the necessity of testing any recon-
struction algorithm in the context of real world objects and real camera imagery to get a
real sense of its performance. Our second approach, therefore, is to appropriate one of
the many scenes present in DTU Robot Dataset [3] to the task of evaluating 3D curvi-
linear reconstructions. This is a significantly harder task than eliminating the surface
meshes in the synthetic case, since the ground truth representation is a 3D point cloud,
and no explicit distinction is made between curve outlines and surface geometry. We
therefore use Blender to project the 3D point cloud ground truth for our selected scene
onto several different images, correct for calibration errors to the best of our capacity,
then remove all the internal surface points to end up with a subset of 3D points which
are in the proximity of curved structures in the scene, see Figure 7 and Figure 8.
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Fig. 1: Our synthetic truth modeled and rendered using Blender for the present work. The bottom
images are sample frames of three different videos for different illumination conditions. A fourth
sequence is also used in the experiments, mixing up frames from the three conditions.
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Fig. 2: Camera path (blue) used to render a realistic synthetic video and generate ground-truth
cameras in our evaluation, as seen overlayed on the ground truth (left) and on a draft rendition of
the scene (right).
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Fig. 3: Sample of real imagery that accompany our ground truth synthetic dataset as it was mod-
eled with high fidelity after a real scene. In the present work this was used as reference for select-
ing ground truth edges, but it could also be used for validating reconstruction form non-synthetic
images.
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Fig. 4: The full Barcelona Pavilion synthetic ground truth (top) and the bounding box (bottom)
corresponding to Figure 10 in the paper.
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Fig. 5: Process of deleting mesh edges to produce the desired ground truth edges.
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Fig. 6: Detail of our ground truth generation. Even minute objects were modeled by discarding
internal mesh edges (blue).
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Fig. 7: Construction of the 3D groundtruth by manually deleting points of the dense point cloud
from structured lighting, which is reprojected onto reference images during editing for disam-
biguating edges. The unstructured point cloud from structured lighting tends to suffer from over-
smoothing, and lacks structure near edges, which we recover from the reference images registered
using the ground truth camera parameters. Yellow shows the selected points which simultane-
ously show in all views and on the 3D reconstruction itself (bottom-right).
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Fig. 8: Cameras used as references for sharp edges during manual construction of the ground
truth from structured lighting scans (left). Zoomed-in process of registered editing of structured
light scan, showing a selection disc together with deleted region, with registered image texture
showing through.
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4 Additional Results

In this Section we present more detailed figures for our results presented in the main pa-
per, Figures 9, 10, 13 and 15; as well as visual comparisons to the results of PMVS [4],
arguably the most well-known dense reconstruction algorithm to date, Figures 11, 12,
14 and 16
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Fig. 9: Curve drawing results for the Barcelona Pavillion dataset, Mid day illumination.
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Fig. 10: Curve drawing results for the Barcelona Pavillion dataset, mixed illumination.
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Fig. 11: Reference PMVS results for the Barcelona Pavilion dataset, mid day illumination.
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Fig. 12: Reference PMVS results for the Barcelona Pavilion dataset, mixed illumination.
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Fig. 13: Curve drawing results for the Capitol High dataset.
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Fig. 14: Reference PMVS results for the Capitol High dataset.
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Fig. 15: Curve drawing results for the Vase dataset.
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Fig. 16: Reference PMVS results for the Vase dataset.
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5 Additional Details

5.1 Language

We used C++ to implement the base system up to the enhanced curve sketch, using
widely-available open source libraries, such as Boost (www.boost.org), and VXL
(vxl.sourceforge.net). The curve drawing stage is implemented in Matlab. The
experiments ran on Linux but the code is very portable.

5.2 Addditional Supplementary Material

Other than this pdf document, the supplementary materials package contains, among
others: i) Two mp4 videos comparing reconstructions of Curve Sketch, Enhanced Curve
Sketch, 3D Drawing and PMVS on Amsterdam House Dataset, and ii) A .PLY file
which contains the 3D Drawing results on the Amsterdam House Dataset. You can
view this model in MeshLab or any other software that supports .PLY file format.

5.3 Availability

The C++ and Matlab source code are available to the public at
multiview-3d-drawing.sourceforge.net, as well as the ground truth datasets
and additional supplementary material.

5.4 Runtime

On a single core, our algorithm takes several hours to process images into 3D Drawings.
This profiling includes edge detection, curve linking, automated calibration of cameras,
hypothesis-testing and graph organization. The algorithm speed can be further increased
by parallel processing and GPU implementation of certain high-demand processes.
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